FOR OFFICIAL USE ONLY

Recommendation proposal

Development and evaluation low cost of solar still plant (Double slope single basin type, DSSB)

Name of the Scientist: Dr. S. H. Sengar, Assistant Professor Dr. Y.P. Khandetod, Professor & Head Dr. A. G. Mohod, Associate Professor

Submitted by

Department of Electrical and Other Energy Sources Faculty of Agricultural Engineering Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth, Dapoli, Dist. Ratnagiri

April 2013

Development and evaluation low cost of solar still plant (Double slope single basin type, DSSB)

01	Project Code	
02	Project Title	Development and evaluation low cost of solar still plant (Double slope single basin type, DSSB)
03	Name of Department Where the project was undertaken a) Name of Department	Department of Electrical and Other Energy Sources Faculty of Agricultural Engineering
04	b) Location of Project Name of Scientist	Department of Electrical and Other Energy Sources Faculty of Agricultural Engineering Dr. S. H. Sengar, Assistant Professor
υŦ	Name of Scientist	D1. 5. 11. 5015at, Assistant 110103501
05	Name of Co-Scientist	Dr. Y.P.Khandetod , Professor Dr. A.G. Mohod, Associate Professor
	Supporting Department	Deptt. of Farm Machinery and Power, CAET, Dapoli
06	Objectives	 Development and evaluation of a pilot scale low cost solar still unit. Development and evaluation of low cost solar still plant. Economic evaluation of solar still plant.
07	Year of start	2009-2010

PART- I: General information

PART- II: Technical information

Methodology:

Three types [wick type, even type (W shape) and single side (L shape)] of solar stills were design on the basis of solar declination angle, slope of collector and available insolation. During theoretical design calculations of solar still (Plate 1), peak winter season was considered. In winter season, December month was selected for finding the solar declination angle (δ), Slope of collector (β), intensity of insolation on horizontal and vertical surface and value of Cos θ is shown in Table 1. The newly developed solar stills were evaluated for load test and compared with the output of single and double slope solar still available in market.

S. N.	Particulars	Symbol	Design parameter of solar still
1	Solar declination angle	δ	$\delta = 23.45 \sin [0.9863(284 + n)]$ $\delta = -23^{\circ}03'$
2	Slope of collector	β	$\beta = (\Phi - \delta)$ $\beta = 40^{\circ} 48'$
3	Intensity of insolation on horizontal	Ic	$\begin{split} I_c &= I_h \times Cos \; \theta \\ I_c &= 450 \; W/m^2 \end{split}$
4	Intensity of insolation on sloping surface	Is	$\begin{split} I_s &= I_h \times Cos \; \theta / \; Cos \; \theta_h \\ I_s &= 594.5 \; W/m^2 \end{split}$
5	Cosine of θ_h	θ_{h}	$\theta_h = 40^{\circ}.8'$

Table: 1. Details of design calculations for even type solar still.

Design Considerations

Solar collector for plant

The solar collector was designed by using following assumptions:

- 1. The device to be situated at latitude of 17°45' N (latitude of Dapoli)
- Minimum insolation on horizontal plane during winter, for 10th of December is 450 W/m² (Anna M. and S. Rangrajan,1980) and observed value of insolation on sloping surface was found to be 594 W/m²

Slope of collector (β)

In order to calculate the optimum slope of collector, winter was taken as a midpoint. Angle of solar declination (δ) was calculated from following equation.

$$\begin{split} \delta &= 23.45 \, \sin \left[0.9863 \, (284 + n) \right] \\ \text{where,} \\ n &= \text{Number of days.} \\ \text{Slope of collector } (\beta) \text{ is calculated by using following formula:} \\ \beta &= (\Phi - \delta) \\ \text{where,} \\ \Phi &= \text{Latitude at test site,} \\ &= 17^{\circ} 45^{\circ} \, \text{N} \\ \text{Positive value of } \beta &= \text{Collector should be south facing.} \end{split}$$

Intensity of insolation (Ic)

Instantaneous insolation on the surface was approximately proportional to the cosine of angle of incidence (θ).

The angle of incidence for insolation falling on south facing roof at midday can be calculated by using following equation.

$$\begin{split} \cos\theta &= \sin\delta \, . \, \sin\Phi \, . \, \cos\beta - \sin\delta \, . \, \cos\Phi \, . \, \sin\beta \, . \, \cosr + \cos\delta \, . \, \cos\Phi \, . \, \cos\beta \, . \\ \cos\omega + \cos\delta \, . \, \sin\Phi \, . \, \sin\beta \, . \, \cos\sigma \, . \, \cos\omega + \cos\delta \, . \, \sin\beta \, . \, \sin\sigma \, . \, \sin\omega \end{split}$$

Where,

 θ = Angle of incidence

 Φ = Latitude of the test

 β = Slope of collector

r = Surface azimuth angle, for structure this can be considered as its orientation with respect to a north south axis. The angle varies from -180° to +180°, zero is due to south, east is negative and west is positive.

The value of r = 0 was used for present calculation.

 ω = the hour angle, is the angular displacement at the sun east or west. It is zero at a solar noon and changes 15° per hour. Morning is negative and afternoon is positive.

 $\omega = 0$ is used for present calculation.

Following equation was used to determine the intensity of insolation on collector surface (I_c),

$$\label{eq:lc} \begin{split} I_c = I_h \times Cos\theta \\ \text{Where,} \end{split}$$

 I_h = Intensity of insolation on horizontal surface, W/m²

For a horizontal surface, since $\beta = 0$ and hence, $\cos \beta = 1$ and $\sin \beta = 0$

Now,

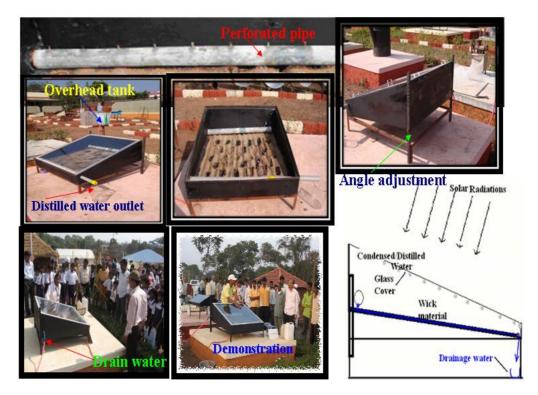
 $\cos \theta h = \sin \delta \cdot \sin \Phi + \cos \delta \cdot \cos \Phi \cdot \cos \omega$

Hence, level of insolation on sloping surface is calculated as:

 $I_s = I_h \ x \ Cos \ \theta/Cos \ \theta h$

Wick Type Solar still

Wick Type Solar still was fabricated at the central workshop of the College of agricultural Engineering and Technology, Dapoli. The pictorial view with different component of wick type solar still is shown in Plate1.


The device was consisted of a base frame made up of angle irons of size 25mm x 25 mm x 4mm, which was 1m x 1m in size and formed the rigid base for the complete unit.

The main frame was also made up of angle irons of size 25 mm x 25 mm x 3 mm, rested on the base frame and hinged from one side for the angle adjustment. The frame was enclosed with the 18 gauge and 24 gauge GI sheets and a thermacol was placed in between the two sheets as insulation from all sides except from top. The absorber consisted of a corrugated sheet of 24 gauge and of 1m^2 area for increasing absorption of incident solar radiations. The unit was painted with blackboard paint for attaining higher absorption of incident solar radiations. The unit was covered with a glass cover of 5mm thick plane glass, fitted in aluminum frame having an area of 1m^2 . The greenhouse effect was possible due to glass which entrapped long wave radiations. The collected water vapour got condensed on inner side of glass.

Device was basically divided into three components as heating chamber, cooling cover and collection unit. Inside the heating chamber, GI pipe was provided for continuous water supply with 15 pin holes of 3 mm drill. The pipe was connected to a storage tank for continuous water supply.

The jute was used as a wick material, which was laid on the corrugated absorber plate with sufficient open area for exposing the black ridge of corrugated absorber. The wick material absorbed the droplets of water coming out from GI pipe and carried this water along the length of the material by capillary action. During this process unused water was collected through the drain outlet and distilled water was collected separately from opposite side and collected in beaker.

The water which was evaporated at higher temperature inside the heating chamber got condensed on the glass surface. The channel was provided for its collection. Water vapour inside the heating chamber got condensed in small droplets of liquid due to low temperature of glass cover. The total cost of this solar still was Rs.7241/- shown in Table 2.

Plate: 1. Wick Type Solar still

Table: 2. Materials used in wick type solar still

Sr. No.	Item	Specifications	Weight (kg)	Rate (Rs.)	Cost (Rs.)
1	M.S. Angle	25mm x 25mm x 4mm	9	60	540/-
2	M.S. Angle	25mm x 25mm x 3mm	12	60	720/-
3	GI Sheet	18 gauge	21	75	1575/-
4	GI sheet	24 gauge	2	75	150/-
5	Corrugated sheet	24 gauge	2	150	400/-
6	M.S. Flat	25mm x 4mm	3.5	45	158/-
7	GI pipe	63 mm diameter	2 m	200/m	400/-
8	M.S. rod	5 mm diameter	4	45	180/-
9	Bucket plastic				100/-
10	Thermocol	25mm thick		30/Sh	120/-
11	Hinges (2)	25mm x 25mm		30/Pie	60/-
12	Lambi		100 gm		50/-
13	Red oxide		100 gm		30/-
14	Blackboard paint		500 ml		50/-
15	Gromate			5/Piec	10/-
16	Cock (Plastic)			5/Piec	5/-
17	Araldite (2)			30/Pie	60/-
18	Glass with frame	1 m x 1 m			942/-

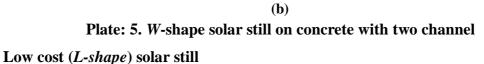
19	Nut and Bolts		20/-
20	Labour Charges	30%	1671
		Total	7241/-

Low cost (*W-shape*) solar still

Low cost (W-shape) solar still frame was design and fabricated at the central workshop of the College of Agricultural Engineering and Technology (CAET), Dapoli. This still was fabricated using 25 mm diameter M.S. pipe to make the frame as shown in Plate 2. The pipes and corners were well polished and laminated in order to avoid corrosions as well as to protect the polythene sheet from damage. The size of basin was 2 m x 2 m was prepared with black plastic covered basin in soil (Plate-2), in which water was impounded. The UV stabilized 200 micron polythene sheet of size 4 x 2.5 m was wrapped properly over the frame so that it became leak proof. The distilled water-collecting channel made from GI sheet wrapped with plastic was attached below the frame with the help of non-corrosive wires. The collecting channels were fabricated so as to catch the condensed droplets of water inside the solar still. The material used for the fabrication of this unit is presented in Table 3. This (W-shape) solar still frame along with UV stabilized plastic as glazing kept over the basin dug on ground (Plate 2) and making it leak proof by using soil cover. The water present in basin got evaporated due to higher temperature inside the heating chamber. Water vapour inside the heating chamber got condensed in the form of small droplets of water due to lower temperature on inner side of polythene. Condensed droplets of evaporated water were collected through three channels. Surrounding condensed water was collected through third channel from all sides at bottom (Plate 3) and first two channels which were fixed inside solar still (Plate 4)

Plate: 2. Basin prepared in soil for W-shape solar still on soil

Plate: 3. Third channel from all bottom sides for W-shape solar still on ground


Plate: 4. Two channel provision for W-shape solar still Plate-3 Third channel

W shape two channels solar still was also erected over the cement block (Plate 5) for evaluating performance. The cost required to erect w shape solar still on ground and cement were Rs. 1848/- and 4000/-

(a)

By using wooden strips and aluminum channel L shape solar still was developed with plastic glazing on soil for distilled water output through single channel shown in Plate 6. The size of L shape solar still was 2 m^2 (1.4m x1.4m). The total cost required to erect L shape solar still on ground was Rs.1000/-

(a)

(b) Plate: 6. Single sides (L shape) solar still.

Sr. No.	Item	Specification	Quantity required	Rate of item	Total Cost (Rs.)
1	M. S. pipe(Low grade)	25 mm diameter	15.8 m	40/m	732/-
2	Polythene film		4 x 2.5 m	50/m ²	500/-
3	GI sheet	18 gauge	0.3 x 2.2 m	220/m ²	150/-
4	Red paint		100 gm	600/kg	60/-
5	Black paint		500 gm	240/kg	120/-
6	Cement	53 grade	5 kg	10/kg	50/-
7	Sand	Fine	10 kg		40/-
8	Welding rod	Short length	8 rods	12/rod	96/-
9	Labor charge		2 days	Rs.100/day	200
		TOTAL			1848/-

Energy Analysis

Different types of solar stills produced distilled water in varying ranges though they had same or different basin area. For finding the reason of varying output of distilled water from same or different solar still, energy analysis was important and hence energy analysis of selected solar stills was carried out in following way.

Energy Efficiency

The energy efficiency of the stills was calculated considering distilled water as the output with corresponding solar radiation and unit area. The following equation was used to calculate the energy efficiency:

$$\eta_{energy} = \frac{(m_{ew} \times C_p \times \Delta T) + (m_{ew} \times L)}{I_s \times 10 \times 3600} \times 100$$
(3.1)

Where,

 $\eta_{\text{energy}} = \text{Energy efficiency (\%)}.$

 m_{ew} = Mass of distilled water collected per day per square metre of collector Area (g).

 $Cp = Specific heat of water (J/g^{\circ}C)$

L = Latent heat of vaporization of water (J/g).

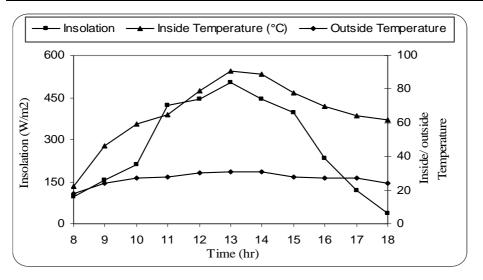
 $I_s = Average solar intensity (W/m^2).$

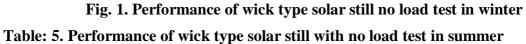
Results and Discussions

Performance Evaluation

Developed solar stills were evaluated for winter and summer months with load test at 40° angle. Devices were tested for comparison with the output of distilled water from single and double slope still units available in market.

Wick type


No load test


Wick type solar still having area $1m^2(1m \times 1m)$ is evaluated for no load test in winter. Maximum temperature was obtained at 1P.M.in solar still, where solar intensity was 503 W/m², inside temperature was 91°C, ambient temperature was 31°C and outside relative humidity was 45.6 per cent. The trend obtained in no load test during performance of bare still unit is shown in Table 4. It was observed from Fig 1 that as inside temperature increased, inside relative humidity decreased and vice versa. It was also observed that the temperature inside the solar still increased with outside solar radiation. In no load test in summer, maximum temperature was obtained at 2 P.M., where solar intensity was 618 W/m², inside temperature was 36.5°C and outside relative humidity was 34.5%. The trend obtained in no load test during performance of bare solar still is shown in Table 5. It was observed (Fig 2) that as inside temperature increased, inside relative humidity was discover (Fig 2) that as inside temperature increased, inside relative humidity was discover was obtained the mumidity was maximum temperature was obtained in no load test during performance of bare solar still is shown in Table 5. It was observed (Fig 2) that as inside temperature increased, inside relative humidity

decreased and vice versa. It was also observed that the temperature inside the solar still increased with outside solar radiation.

Time	Insolation	Inside	Inside	Outside	Outside
(Hrs)	(W/m ²)	R.H. (%)	Temp. (°C)	Temp. (°C)	R.H. (%)
8.00	98	88.6	22	18	89.5
9.00	156	78.5	46	24	78.3
10.00	212	65.4	59	27	65.4
11.00	423	58.5	65	28	52.3
12.00	446	52.1	79	30	44.8
13.00	503	46.9	91	31	45.6
14.00	444	37.6	89	31	44.7
15.00	398	38.5	78	28	53.1
16.00	234	45.9	70	27	56.9
17.00	120	53.6	64	27	67.8
18.00	37	61.7	62	24	78

Table: 4. Performance of wick type solar still with no load test in winter

Time (Hrs)	Insolation (W/m ²)	Inside R.H.	Inside Temp.(°C	Outside Temp.(°C)	Outside R.H.
		(%))		(%)
8.00	233	89.7	35.5	23.4	79.1
9.00	343	71.1	47.1	26.9	66.5
10.00	453	56.4	57.0	29.1	50.3
11.00	546	48.2	65.2	31.1	46.5
12.00	555	39.5	76.5	34.2	40.9
13.00	598	36.1	87.3	36.0	36.7
14.00	618	36.8	94.0	36.5	34.5

15.00	603	36.9	91.4	36.4	35.4
16.00	489	49.0	83.5	32.7	48.9
17.00	357	51.1	74.4	30.0	52.2
18.00	232	56.3	66.8	28.5	59.8

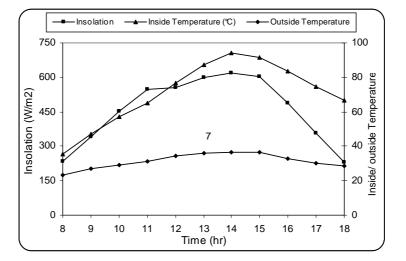
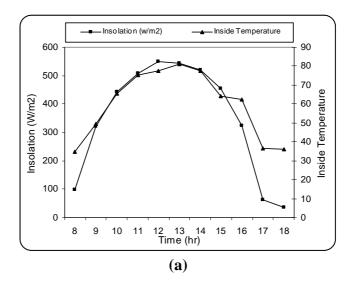
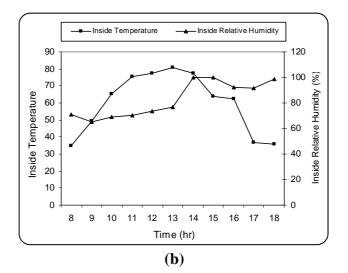


Fig. 2. Performance of wick type solar still no load test in summer


Load test in winter


At 40° angle of collector, maximum temperature obtained at 1 P.M was 81.0° C, where solar intensity was 544 W/m² and ambient temperature was 32°C as shown in Table 6. It was also observed that the maximum wind speed was 7.6 m/s at 1P.M. and hence during that period the maximum distillation rate i.e. 300 ml/hour was observed.

Time	Insolation (W/m ²)	Inside R.H.	Inside Temp.	Outside Temp.	Outside R.H.	Wind speed	Cumulative Distillation
(Hrs)	(**/111)	(%)	(°C)	(°C)	(%)	specu	(ml)
8.00	98	71	34.8	21.3	88.5	0	0
9.00	320	65.4	49.3	26.8	81.3	0	100
10.00	443	69	65.3	27.3	67	2.1	290
11.00	508	70.1	75.4	28.9	56.5	5.3	440
12.00	550	73.4	77.6	31.6	44.1	6.9	650
13.00	544	76.8	81	32	35.4	7.6	900
14.00	520	100	77.4	33.5	37	2.9	1200
15.00	453	100	64.1	35.1	38.5	2.5	1400
16.00	323	92	62.3	36.8	46.9	2.5	1650
17.00	61	91.6	36.7	30	58.6	0.5	1900
18.00	36	98.4	35.9	28.4	72.4	0.2	2150
Overnight distillation up to 8.00 a.m.							150
			Total				2300

Table: 6. Performance of wick type solar still in winter

The trend obtained during performance showed in the Fig. 3 as in the beginning solar intensity increased, inside R.H. and temperature increased and once the R.H. attained 100% value, it remain unchanged invariant of solar intensity. Cumulative distilled water obtained from wick type solar still at 40° in winter was 2300 ml as shown in Table 6.

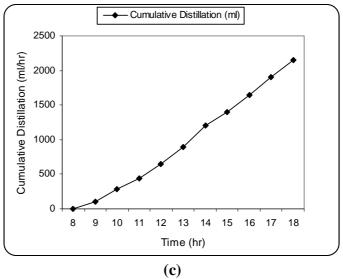


Fig. 3. Performance of wick type solar still with load in winter

Load test in summer

During the performance of wick type solar still with wick material at 40° angle of collector during summer, maximum temperature obtained at 1 P.M was 86.2°C, when solar intensity was 600 W/m² and ambient temperature was 38.0°C. The trend obtained as shown in Fig. 4 shows that distilled water obtained was minimum compared to winter. Maximum cumulative distilled water obtained was 2550 ml/day.

Table: 7. Performance of wick type solar still in summer

Time	Insolati on (W/m²)	Inside R.H. (%)	Inside Temp. (°C)	Outsid e Temp. (°C)	Outsi de R.H. (%)	Win d spee d (m/s)	Cumulati ve Distillati on (ml)
8.00	234	72.3	45.2	27.1	72.1	0	0
9.00	455	78.5	59.1	29.4	56.2	0.3	100
10.00	549	76.4	76.4	30.8	41.1	5.1	300
11.00	607	71.1	79.9	34.2	34.5	0.5	550
12.00	617	69.4	81.5	36.7	32.1	2.2	800
13.00	600	71.6	86.2	38	33.5	1.2	1000
14.00	601	75.3	82.4	37.3	38.6	0.1	1250
15.00	553	78.1	74.6	34.2	42.9	0	1500
16.00	421	83.8	70.4	31.3	50.1	4.3	1800
17.00	267	88.5	62.5	30.5	57	2.5	2100
18.00	165	89	57.1	30.1	69.3	1.6	2350
Overnight distillation up to 8.00 a.m.							
Total							

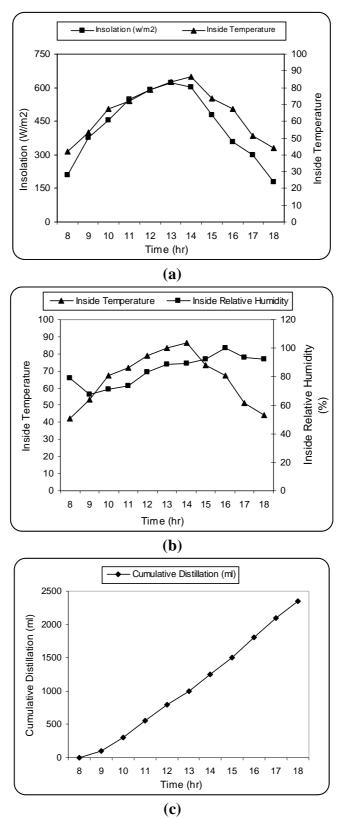
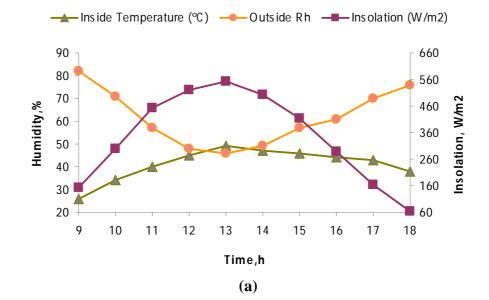


Fig. 4. Performance of wick type solar still with load in summer


W-shape solar still on concrete two channels

No load test

The low cost *W*-shape solar still with area of $2 \text{ m}^2 (2 \text{m x 1m})$ was evaluated for no load test. The maximum average temperature was observed during no load test was 49 °C at 1 p.m. and the same time solar intensity was 553 W/m², ambient temperature was 29 °C, and outside relative humidity was 46 per cent. The trend obtained in no load test during performance testing is as shown in Fig 5 and Table 8. It is revealed from Fig 5 that the temperature inside the still increased with solar intensity in morning hours up to 1 P.M., and then started decline as day progressed.

Table: 8. Performance of W-shape solar	still on concrete two channel with no
load test in winter	

Time	Insolation	Inside Temp.	Ambient Temp.	Inside Humidity	Outside Humidity
(Hrs)	(W/m ²)	(°C)	(°C)	(%)	(%)
9.00	152	26	21	74	82
10.00	301	34	24	69	71
11.00	454	40	27	59	57
12.00	521	45	28	44	48
13.00	553	49	29	40	46
14.00	502	47	30	36	49
15.00	415	46	29	43	57
16.00	287	44	26	52	61
17.00	163	43	24	55	70
18.00	63	38	23	59	76

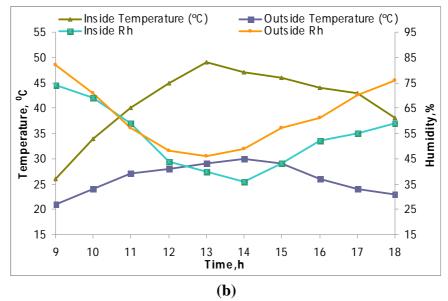
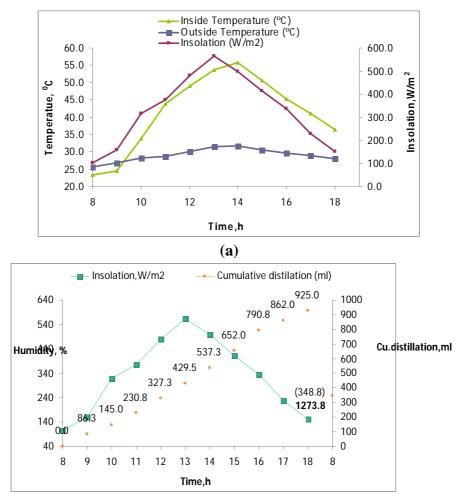


Fig. 5. Performance of *W*-shape solar still on concrete two channels with no load test in winter


Load test

W-shape solar still with two channels was tested with impounding water depth in cement basin. The hourly cumulative distilled water obtained was observed with solar intensity, ambient temperature, relative humidity and inside temperature. shown in Table 9 and Fig 6.

It was observed from Table 9 that maximum average temperature was observed at 1 p.m., when solar intensity was 523 W/m^2 and ambient temperature was 31.9 °C, ambient R.H. was 48 per cent. Trend observed in load test during performance is shown in Fig 6. It was observed that inside temperature increased as the solar intensity increased and hence rate heat utilization for heating the water was more in noon time and accordingly evaporation was observed more after noon hours and then rate of condensation was increased than noon time as solar intensity decreased. Cumulative distilled water obtained from solar still in summer month was 1274 ml including day and night condensation. It was observed that maximum distillation rate obtained between 3 pm to 4 pm which was highest as 138 ml. Average overnight distillation observed in even type solar still unit was 348 ml which was due to higher condensation rate in night.

	ioau test mis	ammer			
Time	Insolation (W/m ²)	Inside Temperature	Outside Temperature	Outside R.H.	Cumulative desalination
(Hrs)		(°C)	(°C)	(%)	(ml)
8.00	103.3	23.3	25.7	75.3	0.0
9.00	159.3	24.5	26.8	68.5	86.3
10.00	317.5	33.8	28.2	65.6	145.0
11.00	376.8	43.8	28.7	61.6	230.8
12.00	480.8	49.0	30.0	57.6	327.3
13.00	523.1	53.8	31.4	52.1	429.5
14.00	499.0	55.8	31.6	50.4	537.3
15.00	413.3	50.8	30.6	54.8	652.0
16.00	336.3	45.3	29.5	59.9	790.8
17.00	228.3	41.1	28.8	63.8	862.0
18.00	150.5	36.3	28.0	67.4	925.0
	Overnig	ght distillation u	p to 8.00 a.m.		348.8
	c c	Total	-		1273.8

 Table: 9. Performance of W-shape solar still on concrete two channels during load test in summer

(b)

Fig. 6. Performance of *W*-shape solar still on concrete two channels during load test in summer

The maximum cumulative distillation obtained in summer season was 1273 ml, solar intensity played vital role in rate and quantity of distillation through the plant.

W- shape solar still on soil two channels

No load

W-shape solar still with two channels was erected on ground and the collected distilled water with two channels was periodically observed along with solar energy, ambient temperature. Inside and outside humidity. The still was evaluated in summer for no load. In summer, maximum inside temperature reached in solar still was 45.1 °C where ambient temperature, solar radiation and relative humidity were found as 35.2,612 and35.2 respectively shown in Table 10 and Fig.7.

Table: 10. Performance of W-shape solar still on ground two channels during no load test in summer

Time (Hrs)	Insolation (W/m ²)	Inside Temperature (°C)	Outside Temperature (°C)	Inside Rh	Outside Rh
8.00	208	28.2	26.6	70.5	72.1
9.00	268	33.1	29.9	59.2	65.4
10.00	355	35.8	31.5	52.4	61.5
11.00	487	45.4	33.6	43.8	58.7
12.00	549	47.2	34.5	37.2	55.2
13.00	612	45.1	35.2	35.2	52.9
14.00	502	46.8	33	45.4	50.4
15.00	355	44.4	32.2	51.7	54.6
16.00	306	44.2	30.2	52.6	57.8
17.00	177	43.4	31	51.4	61.4
18.00	102	42.1	28.5	55	62.5

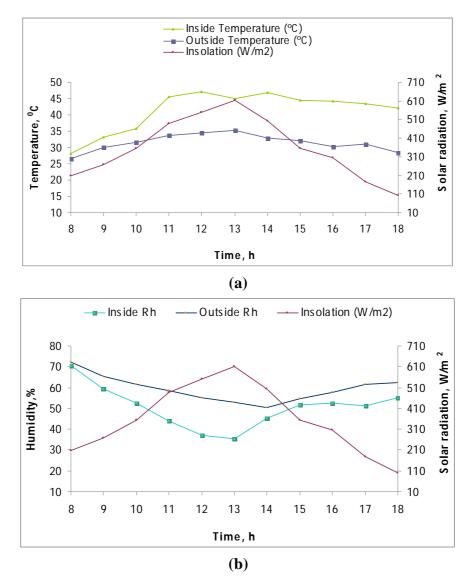
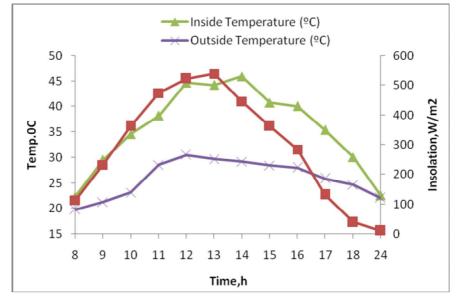
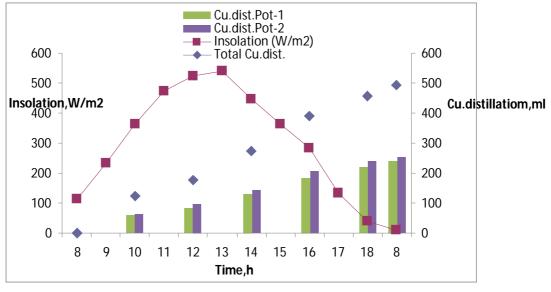


Fig. 7. Performance of *W*-shape solar still on ground two channels during no load test in summer

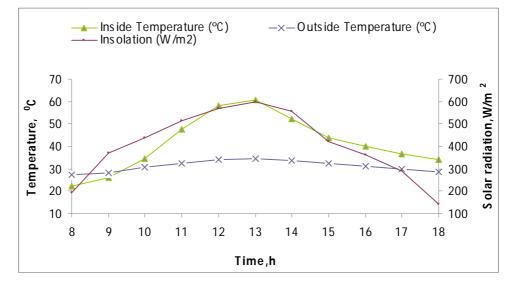

With Load

W shape solar still erected on ground with a provision of two channels for collections was evaluated for winter and summer depicted in Table 11 and Fig.8 and Table 12 and Fig.9 respectively. In winter maximum distilled water collected from 24 hour was only 950 ml which was very less comparing to distilled water obtained in summer as 1936.5 ml from same unit.

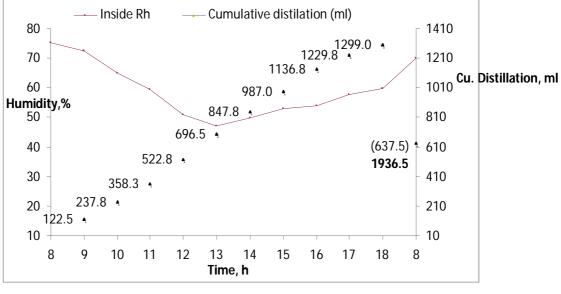

 Table: 11. Performance of W-shape solar still on ground two channels during load test in winter

Time	Insolation	Inside Temp.	Outside Temp.	Inside Rh	Outside Rh	Cu.dist pot-1	Cu.dist Pot-	Total Cu.dist.
h	(W/m2)	(°C)	(°C)	(%)	(%)	(ml)	2(ml)	(ml)
8.0	114.3	22.4	19.8	76.6	75.6	0.0	0.0	0.0
9.0	232.0	29.5	21.3	73.8	69.8			

10.0	362.5	34.6	23.1	58.1	62.3	58.8	64.4	123.1
11.0	474.4	38.2	28.6	53.7	52.3			
12.0	522.1	44.7	30.5	48.8	49.5	82.5	95.6	178.1
13.0	538.8	44.2	29.7	50.1	48.6			
14.0	445.8	45.9	29.2	47.6	49.5	130.6	143.8	274.4
15.0	362.9	40.8	28.4	47.0	51.5			
16.0	284.1	40.1	28.0	50.1	54.4	183.8	205.6	389.4
17.0	132.1	35.4	25.9	58.0	56.3			
18.0	40.0	30.1	24.7	67.5	65.9	219.4	238.8	458.1
	Overnig	ht distillati	on up to 8	.00 a.m.		239.2	252.8	491.9
	Total							950



(b)

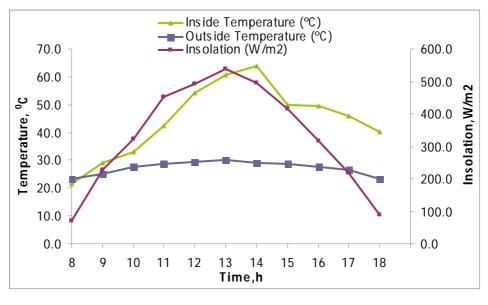

Fig. 8. Performance of *W*-shape solar still on ground two channels during load test in winter

Time	Insolation (W/m ²)	Inside Temperature	Outside Temperature	Inside Rh	Cumulative distilation
		(°C)	(°C)	(%)	(ml)
8	195.0	22.2	27.3	75.1	0.0
9	371.0	26.2	28.4	72.6	122.5
10	438.0	34.7	30.7	64.9	237.8
11	516.0	47.4	32.3	59.4	358.3
12	568.0	58.2	34.0	50.8	522.8
13	600.0	60.7	34.6	47.0	696.5
14	555.0	52.4	33.8	50.0	847.8
15	420.3	43.8	32.3	52.9	987.0
16	364.0	40.0	31.1	54.0	1136.8
17	291.0	36.6	29.7	57.6	1229.8
18	140.8	33.9	28.6	59.7	1299.0
	637.5				
		Total			1936.5

 Table: 12. Performance of W-shape solar still on ground two channels during load test in summer

(a)

(b)


Fig. 9. Performance of W-shape solar still on ground two channels during load test in summer Single side (L- shape one channel) solar still on soil

With Load

L shape solar still was erected on ground with single channel for collection provision. The still was evaluated in winter for load condition. In winter, maximum inside temperature reached in solar still was $63.8 \,^{\circ}$ C where ambient temperature, solar radiation and relative humidity were found as 30.3, 540 W/m² and 51.8 % respectively shown in Table 13 and Fig.10. The Maximum distilled water collected from this unit in winter was only 850 ml in 24 hours.

Time	Insolation (W/m ²)	Inside Temperature	Outside Temperature	Inside Rh	Cumulative distilation	
		(°C)	(°C)		(ml)	
8	70.0	21.5	23.4	72.4	0.0	
9	229.0	28.9	25.2	65.2	12.5	
10	324.0	33.0	27.5	60.3	32.5	
11	453.5	42.4	28.6	46.4	72.5	
12	493.0	54.4	29.5	44.0	130.0	
13	540.0	60.5	30.3	51.8	197.5	
14	495.0	63.8	29.0	51.0	230.0	
15	416.5	50.1	28.7	39.8	282.5	
16	317.5	49.7	27.7	48.3	370.0	
17	218.5	46.0	26.5	49.1	430.0	
18	88.5	40.2	23.4	51.7	475.0	
	Overnight distillation up to 8.00 a.m.					
	Total					

Table: 13. Performance of L type still on ground during load test in winter

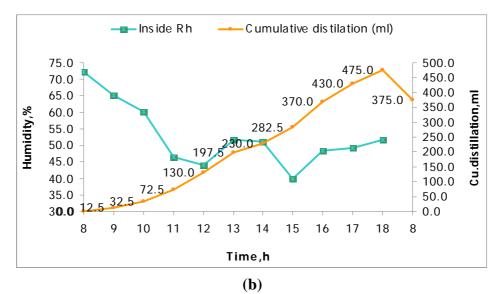
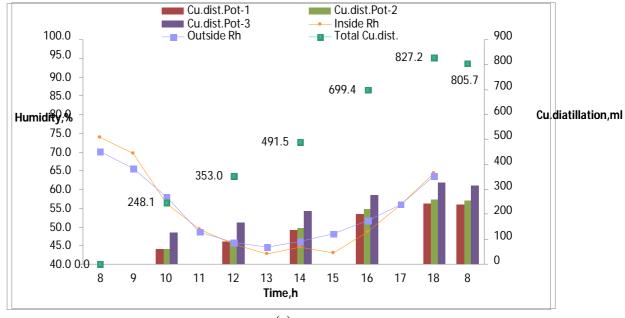
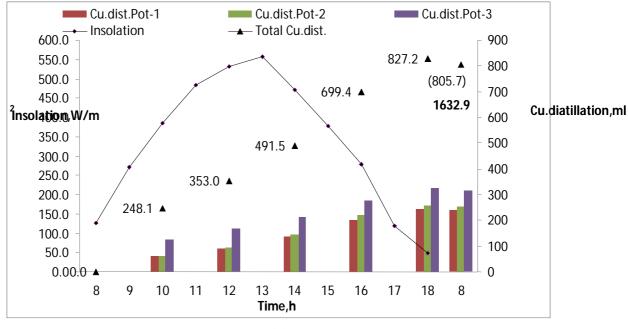


Fig. 10. Performance of L type solar still on ground during load test in winter


W- shape solar still on ground three channel

Load in winter

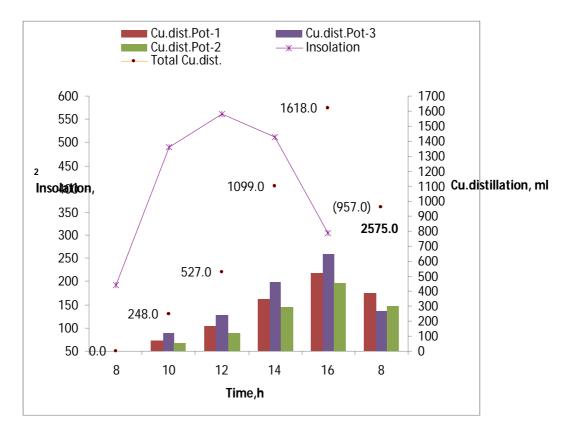

W-shape solar still erected on ground with three channels for collection was evaluated in winter and summer for load test and respective data is depicted in Table 14 and Fig 11. Maximum distilled water collected from solar still erected on soil with three channels was 1633 ml/day. The maximum average solar radiation available in winter during study was 556 W/m² and maximum average inside temperature, inside relative humidity were found as 46 ^oC, 73.8 % respectively. By providing one extra collection channel surrounding the bottom sides of solar still, 65 % increased was observed in total cumulative distillation.

		Ivau iesi	III WIIIICI						
Time	Insolation (W/m2)	Inside Temp. (ºC)	Outside Temp. (ºC)	Inside Rh (%)	Outside Rh (%)	Cu.dist. Pot-1 (ml)	Cu.dist. Pot-2 (ml)	Cu.dist. Pot-3 (ml)	Total Cu. dist.
8.0	127.5	24.3	22.8	73.8	70.2	0	0	0	
0.0	127.5	24.3		13.0		0	0	0	0
9.0	271.1	32.4	23.8	69.6	65.6				
10.0	386.0	36.1	25.6	56.3	58.0	60.3	62.4	125.4	248.1
11.0	484.7	40.4	29.6	49.3	48.7				
12.0	530.4	44.9	31.1	45.2	45.7	90.2	96.0	166.8	353.0
13.0	556.1	43.0	30.7	42.9	44.5				
14.0	470.2	45.7	30.2	44.5	46.0	136.3	144.2	211.0	491.5
15.0	377.3	39.7	29.7	43.0	48.1				
16.0	277.3	39.7	29.3	48.6	51.7	202.9	220.4	276.1	699.4
17.0	118.9	34.8	27.4	56.1	55.9				
18.0	48.0	30.8	26.3	64.2	63.5	243.5	256.9	326.8	827.2
	Overnigl	nt distilla	tion up to 8	3.00 a.m.		239.2	252.8	313.8	805.7
	Overnigh	nt distilla	tion up to 8	3.00 a.m.		239.2	252.8	313.8	

 Table: 14. Performance of W-shape solar still on ground three channels during load test in winter

(a)

(b)


Fig. 11. Performance evaluation of *W*-shape solar still on ground with three channels in winter

Load test in summer

W-shape solar still erected on ground with three channel provision was evaluated in summer for load test and respective data are depicted in Table 15 and Fig 12. Maximum distilled water collected from solar still erected on ground with three channels was 2575 ml/day. By providing one extra collection channel surrounding the bottom side of solar still, 55 % rise was observed in total cumulative distillation in summer.

Time	Insolation (W/m2)	Outside Temp. (⁰C)	Cu.dist. Pot-1 (ml)	Cu.dist. Pot-2 (ml)	Cu.dist. Pot-3 (ml)	Total Cu. dist.
8.00	193.2	28.7	0.0	0.0	0.0	0.0
10.00	490.8	31.8	73.0	53.0	122.0	248.0
12.00	561.6	32.2	164.0	120.0	243.0	527.0
14.00	510.6	32.5	349.0	292.0	458.0	1099.0
16.00	304.0	31.2	518.0	453.0	647.0	1618.0
Overnig	ht distillation up	to 8.00 a.m.	384.0	303.0	270.0	957.0

 Table: 15. Performance of W-shape solar still on ground with three channels during load test in summer

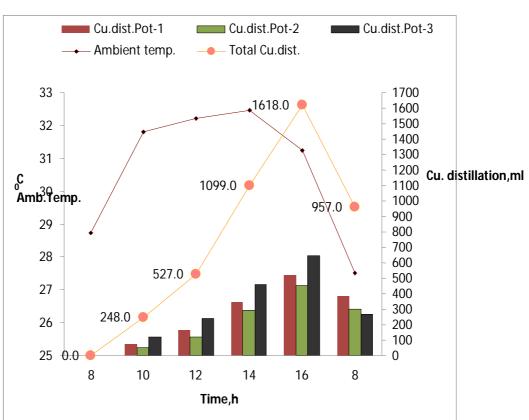


Fig. 12. Performance evaluation of *W*-shape solar still on ground with three channel in summer

Comparison of different solar distillation units

After evaluating the different solar stills, their results of cumulative distillation are compared and depicted in Table16. Comparatively more distilled water was obtained from the solar still having an area of 1m² fabricated in fiber or metal body with glass glazing like single slope ,double slope and wick type solar still. From Table 16 shows that average maximum temperature and humidity was more in double slope, single slope and wick type solar still and hence the average quantity of distilled water obtained as 1350 ml/day, 1550 ml/day and 2450 ml/day respectively. Reason behind the maximum output from single slope ,double slope and wick type solar still was proper insulation and glass glazing where as another solar stills made with plastic wrapping over the frame which itself acted as body of solar still and glazing for maximum energy collection.

When jute cloth was spread above the absorber in wick type solar still, it increased the evaporation rate than single and double slope still and hence comparatively more distilled water was obtained in wick type solar still.

This plastic made up of *W*-shape solar still provided with 3 channels produce maximum distilled water as 2104 ml/day where as *W*-shape solar still with two channels erected on concrete and ground produced only 1012ml/day and 1443 ml/day respectively. L shape solar still produce average distilled water was 925 ml/day which was very low among the all type of solar still.

Comparative lower distillation was observed in *W*-shape polythene based solar still though it has 2 m^2 areas. It might be due to the use of polythene as a glazing area and more heat loss through the unit. Comparative cost of compact nature of solar stills like single slope, double slope and wick type solar still was more than Rs.7000/-which is four times more than newly developed *W*-shape 3 channel solar still. Comparative output from newly developed solar still was low but it has several advantages that it is cheapest, cost efficient and easy to clean.

Sr. No.	Туре	distilled water (ml/ day)	inside temperature (⁰ C)	inside humidity (%)	App.cost (Rs.)
	Available in market				
1	Single slope (1m ²)	1350	60	78	8000/-
2	Double slope (1m ²)	1550	70	82	7500/-

Table: 16. Average performance of solar stills in year

	Newly developed				
1	Wick type (1m ²)	2425	83.6	95	7241/-
2	W shape-2 channel on concrete (2 m^2)	1012	50.5	74.5	4000/-
3	W shape-2 channel on ground, (2 m^2)	1443	53.4	75.5	1848/-
4	L shape, (2 m^2)	925	64.6	72	1000/-
5	W shape-3 channel on ground, (2 m ²)	2104	53.5	74.9	1848/-

Comparative energy analysis

After analysis of data obtained from load tests, energy and exergy efficiencies were calculated for each solar still. It was observed that the wick type still had the highest energy efficiency among all the stills which was 24.59 per cent. Next to it was the double slope type still with energy efficiency of 21.56 per cent. Following it were single slope type solar still, 'W' shaped solar still on soil basin and on concrete basin with energy efficiencies of 21.10 per cent, 10.23 per cent and 10.21 per cent respectively. Table 17 shows the energy efficiencies of various solar stills.

 Table 17: Energy Efficiencies of various solar stills.

Type of Solar Still	Energy Input (J)	Energy Utilized (J)	Energy Efficiency (%)
W shape-2 channel on concrete, 2 m^2	11121122.56	1136026.36	10.21
W shape-2 channel on ground, 2 m^2	11225142.86	1149046.56	10.24
W shape-3 channel on ground, 2 m^2	11225142.76	1212202.35	10.9
Wick type, 1m ²	11225142.86	2760709.30	24.59
Commercial Single slope, 1m ²	11225142.86	2368769.99	21.10
Commercial Double slope,1m ²	11225142.86	2420749.86	21.57

It can be observed from the results that solar stills with a glass cover had comparatively higher energy efficiencies than those with polythene cover. Further, the solar still with wick material had higher energy efficiencies than the stills with impounded water as wick material facilitates evaporation by increasing the surface area for evaporation of water. It was also observed that stills with smaller size had comparatively higher energy efficiencies. This is due to the fact that heat loss from the still was comparatively lower than the other still, owing to the lesser area.

Chemical Analysis

Chemical analysis of impure and pure water obtained from *W*-shape three channel solar still was carried for pH, EC, TDS and ions (Mg⁺⁺, Ca⁺⁺, Na⁺, CO₃⁻, HCO₃⁻, Cl⁻) concentration. The concentration of these substrates before and after desalination is given in Table 18.

Chemical properties of Water	Before Distillation (Tap) Water)	Conventional Distilled water	After Distillation (Distilled Water)
рН	7.8	7.0	7.0
EC (µS/cm)	100	0.5	0.8 (0.520 mg/l)
TSS (%, ⁰ Brix)	0.02	0	0
Mg ⁺⁺ (ppm)	0.00088	0	0.00036
Ca ⁺⁺ (ppm)	0.00090	0	0.00032
$Mg^{++} + Ca^{++}$ (me/lit)	0.0018	0	0.00040
Na ⁺ (me/lit)	3.5	0	0.1
CO ₃ ⁻ (me/lit)	0.6	0	0
HCO ₃ ⁻ (me/lit)	0.2	0	0.15
Cl ⁻ (me/lit)	1.6	0	0

Table: 18.	Chemical	analysis o	of impure and	pure water sample

It was observed from the results of chemical analysis of pure and impure water, given in Table 7 that there was drastic reduction in the pH, EC, Mg^{++} , Ca^{++} , Na^+ , CO_3^- , HCO_3^- ions Carbonate, Bicarbonate etc. in the distilled water.

Cost economics

During evaluating performance of solar distillation unit, different direct benefits were derived. These benefits were indicators of technical feasibility of plant. Subsequently the economics of the plant was evaluated in the term of cost per liter of distilled water through electrical backup in distillation unit. Hourly benefits of the plant are considered and payback period of distillation unit was made. The total cost that of the investment spread over the entire useful life of the plant, including initial cost, operation cost, maintenance and interest are taken in consideration for payback period.

Considering the average distilled water obtained from even type W- shape solar still as 2.1 liter for 250 days a year. It produced 526 liters of distilled water yearly. By considering the wholesale market value of distilled water (Rs.10/lit) and

total income generated while producing 526 liters of distilled water is tabulated in Table 19.

Sr. No.	Particulars		Amount (Rs.)
1	Total Revenue		5260
2	Cost of Device		1848
3	Cost of Energy		Nil
4	Cost of Polythene		` 500
5	Cost of Labor, Operation and Maintenance for trouble free operation of unit	Per year	300
	operation of unit	After every 5 year	` 800

Table: 19. Details about cost analysis of solar still

Table: 20.	Payback 2	Period Analysis	of distillation	unit
	Coch	PW of Cosh	Cash	DW of C

Year	Cash outflow	PW of Cash outflow (at 12 %	Cash inflow	PW of Cash inflow (at 12 %	NPW
		discount rate)		discount rate)	
Α	В	С	D	F	F-C
0	1848	1848	0.0		-1848.0
1	300	270.3	5260.0	4738.7	4468.5
2	300	243.5	5260.0	4269.1	4025.6
3	300	219.4	5260.0	3846.1	3626.7
4	300	197.6	5260.0	3464.9	3267.3
5	800	474.8	5260.0	3121.6	2646.8
6	300	160.4	5260.0	2812.2	2651.8
7	300	144.5	5260.0	2533.5	2389.0
8	300	130.2	5260.0	2282.5	2152.3
9	300	117.3	5260.0	2056.3	1939.0
10	800	281.7	5260.0	1852.5	1570.7
11	300	95.2	5260.0	1668.9	1573.7
12	300	85.8	5260.0	1503.5	1417.8
13	300	77.3	5260.0	1354.5	1277.3
14	300	69.6	5260.0	1220.3	1150.7
15	800	167.2	5260.0	1099.4	932.2
16	300	56.5	5260.0	990.4	933.9
17	300	50.9	5260.0	892.3	841.4
18	300	45.8	5260.0	803.8	758.0
19	300	41.3	5260.0	724.2	682.9
20	0	0.0	5260.0	652.4	652.4
TC	DTAL	2929.1		41887.1	38958.0

Table: 21. Economic indicators for solar distillation units

Туре	Cost (Rs.)	Net Present Worth	BCR for first year	PBP
Even type	1848/-	38958	2.56	4 months
distillation unit				6 days

It was observed from the Table 21, the cost of unit is recovered within 4 months 6 days only, i.e. the payback period of the unit was only 1/3rd year and after that period the unit will produce net profit. Area of newly developed solar still is double than other two distiller but pay back period is minimum it may due to the lower cost of unit. All economic indicators are summarized in Table 21, as Benefit Cost Ratio (BCR) was 2.56, whereas Net Present Worth (NPW) was Rs.38958.

Results

- **1.** Newly developed *W*-shape solar still with three channel erected on soil was economical for the average output of 2104 ml/day distilled water.
- **2.** Concentration of pH, EC, TDS and ions in solar distilled water was found to be similar as conventional distilled water.

Recommandation

Dr. B.S.K.K.V. developed *W*-shape three channels solar still erected on ground using 200 micron UV stabilized clear poly ethylene film is recommended for production of 2 lit/day distilled water in Konkan region.

f'kQkj I Þ

MkW ck-lk-dkscl-fo-fodfir MCY; wvkdkjkpsnksu'ksek; dkW/tkMhpsvfrfuyfdj.k Ijf{kr lykLVhd ¼rhu ukY; k viysyš⁄2 vkPNknu oki: u tfeuhoj mHkkj.kh dsyš/; k Ikjty 'kophdj.k lajækph dkcl.k foHkkoxklkBh 2 fy-ifr fnol 'koph ik.kh ikirhlkBh f'kQkji dj.; kr ; sr vkgs

Scientists involved

(S. H. Sengar) Assistant Professor (A G Mohod) Associate Professor (Y.P.Khandetod) Professor and Head

(Dilip MAHALE) Associate Dean, CAET, dapoli

Director of Research Dr. Balasaheb Sawant Konkan Krshi Vidyapeeth, Dapoli